Alliance A071401

This phase II trial studies how well vismodegib and focal adhesion kinase (FAK) inhibitor GSK2256098 work in treating patients with meningioma that is growing, spreading, or getting worse. Vismodegib and FAK inhibitor GSK2256098 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

ALLIANCE A071701

This phase II trial studies how well genetic testing works in guiding treatment for patients with solid tumors that have spread to the brain. Several genes have been found to be altered or mutated in brain metastases such as NTRK, ROS1, CDK or PI3K. Medications that target these genes such as abemaciclib, GDC-0084, and entrectinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Genetic testing may help doctors tailor treatment for each mutation

Alliance A071702 – Temporarily Closed

This phase II trial studies the effect of immunotherapy drugs (ipilimumab and nivolumab) in treating patients with glioblastoma that has come back (recurrent) and carries a high number of mutations. Cancer is caused by changes (mutations) to genes that control the way cells function. Tumors with high number of mutations may respond well to immunotherapy. Immunotherapy with monoclonal antibodies such as ipilimumab and nivolumab may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving ipilimumab and nivolumab may lower the chance of recurrent glioblastoma with high number of mutations from growing or spreading compared to usual care (surgery or chemotherapy).

Alliance N0577

This randomized phase III trial compares giving radiation therapy alone or temozolomide together with radiation therapy and to see which works best in treating patients with newly diagnosed anaplastic glioma or low grade glioma. Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving radiation therapy alone or temozolomide together with radiation therapy is better in treating anaplastic glioma or low grade glioma.

CCTG CE.7

This phase III trial studies stereotactic radiosurgery to see how well it works compared to hippocampus avoidance whole-brain radiation therapy with memantine in treating patients with 5-15 brain tumors that have spread from other places in the body. Stereotactic radiosurgery is a specialized radiation therapy that delivers a single, high dose of radiation directly to the tumor and may cause less damage to normal tissue. Hippocampus avoidance whole-brain radiation therapy delivers radiation to the entire brain except for the hippocampus. The hippocampus is a brain structure that is important for memory. Hippocampus avoidance during whole-brain radiation therapy decreases the amount of radiation that is delivered to this area. Memantine is often given with whole brain radiation therapy and may decrease the risk of cognitive side effects after radiation therapy to the brain. It is not yet known whether stereotactic radiosurgery or whole-brain radiation therapy works better in treating patients with 5-15 brain metastases.

NRG-BN003

This randomized phase III trial studies how well radiation therapy works compared with observation in treating patients with newly diagnosed grade II meningioma that has been completely removed by surgery. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors.

NRG-BN005

This randomized phase II clinical trial studies the side effects and how well proton beam or intensity-modulated radiation therapy works in preserving brain function in patients with IDH mutant grade II or III glioma. Proton beam radiation therapy uses tiny charged particles to deliver radiation directly to the tumor and may cause less damage to normal tissue. Intensity-modulated or photon beam radiation therapy uses high-energy x-ray beams shaped to treat the tumor and may also cause less damage to normal tissue. Patients will be more likely to be randomized to proton beam radiation therapy. It is not yet known if proton beam radiation therapy is more effective than photon-based beam intensity-modulated radiation therapy in treating patients with glioma.

NRG-BN009

This phase III trial compares the effect of adding whole brain radiotherapy with hippocampal avoidance and memantine to stereotactic radiosurgery versus stereotactic radiosurgery alone in treating patients with cancer that has spread to the brain and come back in other areas of the brain after earlier stereotactic radiosurgery. Hippocampus avoidance during whole-brain radiation therapy decreases the amount of radiation that is delivered to the hippocampus, which is a brain structure that is important for memory. The medicine memantine is also often given with whole brain radiation therapy because it may decrease the risk of side effects of radiation on thinking and memory. Stereotactic radiosurgery delivers a high dose of radiation only to the small areas of cancer in the brain and avoids the surrounding normal brain tissue. Adding whole brain radiotherapy with hippocampal avoidance and memantine to stereotactic radiosurgery may be effective in shrinking or stabilizing cancer that has spread to the brain and returned in other areas of the brain after receiving stereotactic radiosurgery.

NRG-BN010

This phase II trial studies the effect of tocilizumab in combination with atezolizumab and stereotactic radiation therapy in treating glioblastoma patients whose tumor has come back after initial treatment (recurrent). Tocilizumab is a monoclonal antibody that binds to receptors for a protein called interleukin-6 (IL-6). This may help lower the body's immune response and reduce inflammation. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Fractionated stereotactic radiation therapy uses special equipment to precisely deliver multiple, smaller doses of radiation spread over several treatment sessions to the tumor. The goal of this study is to change a tumor that is unresponsive to cancer therapy into a more responsive one. Therapy with fractionated stereotactic radiotherapy in combination with tocilizumab may suppress the inhibitory effect of immune cells surrounding the tumor and consequently allow an immunotherapy treatment by atezolizumab to activate the immune response against the tumor. Combination therapy with tocilizumab, atezolizumab and fractionated stereotactic radiation therapy may shrink or stabilize the cancer better than radiation therapy alone in patients with recurrent glioblastoma

NRG-BN011

This phase III trial compares the effect of adding lomustine to temozolomide and radiation therapy versus temozolomide and radiation therapy alone in shrinking or stabilizing newly diagnosed MGMT methylated glioblastoma. Chemotherapy drugs, such as lomustine and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy photons to kill tumor cells and shrink tumors. Adding lomustine to usual treatment of temozolomide and radiation therapy may help shrink and stabilize glioblastoma.

NRG-BN012

This phase III trial compares the addition of stereotactic radiosurgery before or after surgery in treating patients with cancer that has spread to the brain (brain metastases). Stereotactic radiosurgery is a type of radiation therapy that delivers a high dose of radiation only to the small areas of cancer in the brain and avoids the surrounding normal brain tissue. Surgery and radiation may stop the tumor from growing for a few months or longer and may reduce symptoms of brain metastases.

Wake Forest WF-2201

This study is designed to see if we can lower the chance of side effects from radiation in patients with breast, kidney, non-small cell lung cancer or melanoma that has spread to the brain and who are also being treated with immunotherapy, specifically immune checkpoint inhibitor (ICI) therapy. This study will compare the usual care treatment of single fraction stereotactic radiosurgery (SSRS) given on one day versus fractionated stereotactic radiosurgery (FSRS), which is a lower dose of radiation given over a few days to determine if FSRS is better or worse at reducing side effects than usual care treatment.